
SIIM -TR-A-01-14

DraftSIIM Technical Report

TIMEDTTCN-3 – A Real-time extension for TTCN-3

by

Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

Schriftenreihe der Institute für

Informatik/Mathematik

Serie A

September 21, 2001

Medizinische

Universität zu Lübeck
Technisch-Naturwissenschaftliche Fakultät

Email: neukirch@informatik.mu-luebeck.de Phone: +49-451-500-3721

Fax: +49-451-500-3722

TIMEDTTCN-3 – A Real-time extension for

TTCN-3

Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

September 21, 2001

1 Introduction

One of the most challenging research areas in testing is the testing of distributed

real-time systems. Such systems are getting an ever increasing importance in

daily life, such as for business and administration (e.g., E-Commerce), for home

(e.g., home brokerage), teaching (e.g., teleteaching and -tutoring) and process

control (e.g., air traffic control). Testing is the most important means to assure

the correctness of distributed real-time systems with respect to functional and

real-time behaviour.

The procedures for testing functional behaviour are defined in the interna-

tional ISO/IEC standard 9646 Conformance Testing Methodology and Frame-

work (CTMF) [15]. Even though CTMF focuses on conformance testing of OSI

protocol entities, CTMF has been applied successfully to other types of func-

tional testing. Part 3 of CTMF defines the test specification language Tree and

Tabular Combined Notation (TTCN). The second edition of TTCN (TTCN-

2) has been distributed as update of CTMF.1 With PerfTTCN (Performance

TTCN) [19] and RT-TTCN (Real-Time TTCN) [20, 21] two approaches exist

to extend TTCN-2 for real-time and performance testings.

PerfTTCN extends TTCN-2 with concepts for performance testing. These

concepts are: (1) performance test scenarios for the description of test configu-

rations which include, e.g., load generator components for fore- and background
1The latest corrections of the second edition (TTCN-2++) were published in 1999 as a

technical report by the European Telecommunications Standards Institute (ETSI) [3].

1

2 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

load, (2) traffic models for the description of discrete and continuous streams

of data, (3) measurement points as special observation points, (4) measurement

declarations for the definition of metrics to be observed at measurement points,

(5) performance constraints to describe the performance conditions that shall

be met, and (6) performance verdicts for the judgement of test results. The

PerfTTCN concepts are introduced mainly on a syntactical level by means of

new TTCN tables. Their semantics are described in an informal manner only.

RT-TTCN is a syntactical and semantical extension of TTCN-2 in order to

test hard real-time requirements. On the syntactical level, RT-TTCN supports

the annotation of TTCN-2 statements with two timestamps for earliest and latest

execution times. On the semantical level, the TTCN-2 snapshot semantics has

been refined and, in addition, RT-TTCN has been mapped onto timed transition

systems [9].

From 1998 to 2001, an ETSI experts team has developed the third edition of

TTCN (TTCN-3) [4, 8]. TTCN-3 is a complete redesign of the language and

not only an extension or correction of TTCN-2. TTCN-3 is based on a textual

core notation on which a number of different presentation formats are possible

[5, 6]. This makes TTCN-3 quite universal and implementation independent. In

TTCN-3, all OSI and conformance testing specific constructs have been removed

and several new concepts like, e.g., dynamic test configurations, procedure-based

communication and module control part, have been introduced. The development

of TTCN-3 concentrated on features for functional testing. Thus, some major

concepts needed for real-time and performance testing are still missing.

This paper tries to close this gap by proposing TIMEDTTCN-3 as a real-

time extension for TTCN-3. TIMEDTTCN-3 introduces (1) a new test verdict

to judge real-time behaviour, (2) supports absolute time as a means to measure

time and to calculate durations, (3) allows to delay the execution of statements

for defining time dependent test behaviour, (4) supports the specification of

synchronization conditions for test components and (5) provides means for the

online and offline evaluation of real-time properties. Our first experiments give

evidence that TIMEDTTCN-3 covers most PerfTTCN and RT-TTCN features.

The rest of this paper is structured into the following sections: Section 2

introduces a test case example which will be used to explain all TIMEDTTCN-3

features. Section 3 explains the necessity of defining a new verdict for non-

TimedTTCN-3 – A real time extension for TTCN-3 3

functional behavior. Section 4 provides time extensions for TTCN-3. Section 5

expounds two evaluation methods for real-time properties. Finally, Section 6

gives an overall view and outlook of the presented work.

2 An Inres-Based Example

The concepts of TIMEDTTCN-3 will be explained by a test case for the well-

known Inres protocol [10]. As shown in Figure 1, the test case is written for

the distributed test method of CTMF [15]. The Implementation Under Test

(IUT) is an Initiator implementation. The Upper Tester (UT) function plays

the role of an Initiator user and the Lower Tester (LT) function plays the role

of a Responder entity. The UT has a direct connection with the IUT whereas

the LT only has indirect access to the lower interface of the IUT via a Medium

Service. UT and LT coordinate themselves by Test Coordination Procedures

(TCP).

TCP

(Responder)
LT

MSAP

IUT
Initiator

(Initiator user)
UT

ISAP

System
Test

Medium Service

SUT

Figure 1: Distributed test architecture for the Inres test case example

The test case example is designed to test the real-time properties latency and

mean arrival time for the exchange of 100 data packets. Its principle control

flow and message exchange is presented by the MSC [22] in Figure 2. The test

case starts with a preamble that establishes a connection between UT and LT.

Afterwards, UT and LT synchronize in order to ensure that both tester functions

are in a correct state to execute the test body. The test body includes the

sending of 100 data packets from UT to LT. The LT must always acknowledge

the correct reception of each data packet. Otherwise, the SUT will retransmit

4 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

LT
MSAP

UT
ISAP

inres

Synchronization

Synchronization

Connection_Release

1

1loop <100>

Connection_Establishment

MSC InresRTexample

IDATreq

(’data’)

MDATind

(DT, number, ’data’)

MDATreq

(AK, number)

Figure 2: Control flow and message exchange of the example test case

the data packet or, after three retransmissions, release the connection.2 At the

end of the test body, UT and LT synchronize again and perform a postamble to

release the connection.

The TIMEDTTCN-3 code for the behaviour of the main test component (mtc)

is shown in Figure 3. In our example, the mtc is the UT, i.e., it plays the role

of an Initiator user. Lines 1 and 2 provide the interface of the test case, i.e., the

test case name, the formal parameters, the component types for mtc (runs on

clause) and abstract test system interface (system clause). Lines 3-7 describe

variable declarations, a default activation and the mapping of mtc ports onto

ports of the abstract test system interface.

The creation of the LT component, the mapping of LT ports onto ports of the

abstract test system interface, the connection of LT and mtc ports, and the start

of the LT component are specified in lines 8-11. The preamble InitiatorPreamble

is called in line 12 and the initial synchronization by means of an UT-initiated

handshake with boolean synchronization messages is shown in lines 13 and 14.
2The retransmission of data packets and the exceptional connection release are not shown

in Figure 2.

TimedTTCN-3 – A real time extension for TTCN-3 5

(1) testcase InresRTexample(integer sequenceStartNum)
(2) runs on InitiatorUserType system InresSystemType {
(3) var ResponderType responder := null;
(4) var float sendTime := 0.0;
(5) var default myDefault := null;

(6) myDefault := activate(InitiatorDefault); // Default activation
(7) map(self :ISAP, system:ISAP);

// Creating/mapping/connecting/starting the Responder PTC
(8) responder := ResponderType.create(self.timezone)
(9) map(responder:MSAP, system:MSAP);

(10) connect(self :CP, responder:CP);
(11) responder.start(ResponderBehaviour(SequenceStartNum));

(12) InitiatorPreamble(); // Preamble for connection establishment

// Initial synchronization
(13) CP.send(boolean:true);
(14) CP.receive(boolean:true); // Default handles alternatives

(15) sendTime := self.now + 5.0; // Send the first time in 5.0s

// Sending of 100 data packets in a loop
(16) for (var integer i := 1; i <= 100; i := i + 1) {
(17) resume(sendTime); // Wait until ’sendTime’
(18) log (TimestampType:{self.now, self.timezone, IDATreq});
(19) ISAP.send(IDATreqType:{self.now});
(20) sendTime := sendTime + 0.01; // Send periodically every 10ms
(21) }

// Final synchronization
(22) CP.send(boolean:true);
(23) CP.receive(boolean:true); // Default handles alternatives

(24) verdict.set(pass); // Everything is OK
(25) InitiatorPostamble(); // Postamble for connection release
(26) }

Figure 3: TIMEDTTCN-3 test case description

The time for sending the first data packet is determined in line 15. The body of

the test case consists of the for loop specified in lines 16-21. The loop body is

repeated 100 times and specifies that a data packet is sent every 10ms (lines 19

and 20).3 The test case terminates with the final synchronization (lines 22 and

23), the setting of a pass verdict (line 24) and the call of the postamble Initiator-

Postamble (line 25). We assume that the mtc terminates inside the postamble.

The LT plays the role of a Responder entity. Its behaviour is specified by

the TIMEDTTCN-3 function shown in Figure 4. The function can be structured

into three parts and is very similar to the structure of the mtc (Figure 3). The

first part consist of declarations (lines 2 and 3 of Figure 4), a default activa-
3In TTCN-3, time values are represented by float numbers which by default describe sec-

onds, i.e., the float value 0.01 represents 10ms.

6 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

(1) function ResponderBehaviour(integer expectedNum) runs on ResponderType {
(2) var float receiveTime := 0.0, sendTime := 0.0;
(3) var MDATindType receivedMessage;

(4) myDefault := activate(ResponderDefault); // Default activation

(5) ResponderPreamble(); // Preamble for connection establishment

// Initial synchronization
(6) CP.receive(boolean:true);
(7) CP.send(boolean:true);

// Receiving 100 data packets in a loop
(8) for (var integer i := 1; i <= 100; i := i + 1) {
(9) alt {

(10) [] MSAP.receive(MDATindType:{DT, expectedNum, ?}))
-> value receivedMessage {

(11) receiveTime := self.now;
(12) log(TimestampType:{receiveTime, self.timezone, MDATind});
(13) sendTime := receivedMessage.data; // Extract the send time

(14) // Latency online evaluation
(15) if (evalLatency(sendTime, receiveTime, 0.001, 0.005) == conf) {
(16) verdict.set(conf);
(17) }
(18) MSAP.send(MDATreqType:{AK, expectedNum, 0.0});
(19) expectedNum := toggle(expectedNum);
(20) }
(21) [] MSAP.receive(MDATindType:{DT, toggle(expectedNum), ?})) {
(22) MSAP.send(MDATreqType:{AK, toggle(expectedNum), 0.0});
(23) repeat;
(24) }
(25) }
(26) }

// Final synchronization
(27) CP.receive(boolean:true);
(28) CP.send(boolean:true);

(29) verdict.set(pass); // Everything is OK
(30) ResponderPostamble(); // Postamble for connection release
(31) }

Figure 4: TIMEDTTCN-3 behaviour of the Responder test component

tion (line 4), the call of the preamble ResponderPreamble (line 5) and the initial

synchronization (lines 6 and 7).

The second part is the test body and consists of a for loop (lines 8-26).

The loop body is repeated 100 times and includes an alt statement with two

alternatives. The first alternative (lines 10-20) describes the expected message

exchange: A correct data packet is received (line 10), the actual time is retrieved

and recorded (lines 11 and 12), the send time is extracted from the received

message (line 13), the latency is checked (line 15), if the latency requirement

TimedTTCN-3 – A real time extension for TTCN-3 7

is violated, the new test verdict conf (Section 3) is set (line 16), finally, the

data packet is acknowledged (line 18) and the sequence number of the next

correct data packet is computed (line 19). The second alternative describes the

case when the previous acknowledgment got lost and, therefore, the previous

data packet is re-transmitted by the IUT. The reception of the re-transmitted

data packet is described in line 21 and its re-acknowledgement is specified in

line 22. The repeat statement in line 23 causes the re-evaluation of the entire

alt statement, i.e., the test component waits for the reception of the next correct

data packet.

The third part of function ResponderBehavior describes the final synchroniza-

tion (lines 27 and 28), the setting of the pass verdict (line 29) and the call of

ResponderPostamble (line 30). We assume that the component terminates inside

the postamble.

The test case specifies the expected message exchange only. Erroneous and

unexpected responses received from the SUT are considered to be handled by

defaults (line 6 in Figure 3 and line 4 in Figure 4).

The TIMEDTTCN-3 code in Figure 3 and Figure 4 includes the real-time

extensions self.now, resume, self.timezone, the new verdict conf , a modified

syntax for the log statement and a new parameter for the create operation.

These extensions will be explained in the following sections.

3 Non-Functional Verdicts

Currently, the TTCN-3 verdicts indicate basically whether a test case was suc-

cessful (pass), inconclusive (inconc) or faulty (fail) with respect to functional

requirements.

By introducing the possibility to test non-functional requirements, additional

information concerning the test outcome is needed: A test case may pass with

respect to both functional and non-functional behaviour or it may pass only

with respect to the functional behaviour while the non-functional requirements

are violated.4

4In the following, the terms functional pass, non-functional pass, etc. are used to describe
the test outcome with respect to functional and non-functional behaviour.

8 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

Current value New verdict assignment value
of verdict pass conf inconc fail none

pass pass conf inconc fail pass

conf conf conf inconc fail conf

inconc inconc inconc inconc fail inconc

fail fail fail fail fail fail

none pass conf inconc fail none

Figure 5: TIMEDTTCN-3 overwriting rules for the test verdicts

Since non-functional behaviour can be observed only in combination with

functional behaviour on which the non-functional requirements are imposed, it

is not meaningful to make any statements on non-functional test results if the

functional behaviour is not conforming to the functional requirements.

Even in case of a functional inconclusive, no statement can be made on non-

functional test results, since such an inconclusive case may have other non-

functional requirements than the pass case which is subject of testing. Hence,

distinctive verdicts are just needed (and meaningful) in case of a functional pass

to differentiate between the different possible results of testing the associated

non-functional behaviour. In contrast to the functional verdicts, a non-functional

inconclusive verdict is not needed, since a non-functional requirement is either

fulfilled or not.

Besides the existing pass verdict which is used to indicate a functional pass

with an associated non-functional pass, TIMEDTTCN-3 introduces the new ver-

dict conf (as abbreviation for conforming) to indicate a functional pass with

an associated non-functional fail. Due to the introduction of the new verdict,

TIMEDTTCN-3 uses new overwriting rules for verdicts. They are presented in

Figure 5. The new verdict conf is inserted between the verdicts pass and in-

conc.

An example for the usage of the new conf verdict can be found in Figure 4.

If the latency requirement is violated (checked in the if statement in line 15),

conf is assigned to the local verdict of the Responder test component (line 16).

Due to the overwriting rules of TIMEDTTCN-3, an actual conf verdict will not

be overwritten by the verdict.set(pass) statement in line 29.

In accordance to TTCN-3, each test component maintains its own local ver-

dict in TIMEDTTCN-3. The local verdicts contribute to the global verdict of the

TimedTTCN-3 – A real time extension for TTCN-3 9

test case which is calculated from the local ones based on the overwriting rules

shown in Figure 5.

4 Time Extension for TTCN-3

For the handling of time, TTCN-3 provides a timer mechanism. A timer has to

be declared at the beginning of a test case. Afterwards it is possible to start and

stop the timer, to check if the timer is running, to read the elapsed time of the

running timer and to observe and handle timeout events after expiration. The

existing TTCN-3 timer mechanism is designed for supervising the functional

behaviour of an IUT, e.g., to prevent the blocking of a test case or to provoke

exceptional behaviour. But this timer mechanism is too slow and too clumsy

for the test and measurement of real-time properties, because the measurement

of durations is influenced by the TTCN-3 snapshot semantics and by the order

in which the port queues and the timeout list are examined. TTCN-3 makes

no assumptions about the duration for taking and evaluating a snapshot. Thus,

exact times can not be measured and computed.

Furthermore, TTCN-3 has no concept of absolute time, i.e., a test component

cannot read and use its local system time. In real-time testing, the absolute time

is necessary to check relationships between observed test events and to coordinate

test activities. In case of synchronized clocks in a distributed test environment,

the system time may be exchanged among test components to check real-time

requirements that cannot be measured locally or for a timely coordination of

test activities.

As a consequence of these considerations, TIMEDTTCN-3 has the concept of

absolute time in order to support real-time testing. In case of a distributed test

environment, the test cases may define the requirements for the synchronization

of clocks of different test components.

4.1 Absolute Time

Absolute time is related to clocks that provide the actual value of time. We

assume that each test component has access to such a clock, but make no as-

10 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

sumptions about the number and the synchronization of these clocks.5

For the handling of time values either a new type is needed, or the time values

have to be mapped onto an existing basic type. Due to numerous possible time

representations, e.g., the UNIX approach to count the the seconds since 1.1.1970

[11] or a structured type with fields for year, month, day, hour etc., a common

new type for time values is not easy to define.

For simplicity, TIMEDTTCN-3 uses the existing float type and follows the

UNIX approach, i.e., time is counted in seconds and the absolute time is repre-

sented by the number of seconds since a fixed point in time. In contrast to the

UNIX scheme, TIMEDTTCN-3 does not define a fixed starting point for the time

measurement. But since we are interested in the measurement of time during the

testrun, the point in time at which a testrun starts should at least be required.

For that, TIMEDTTCN-3 supports the usage of absolute time by the operations

now and resume:

• The now operation is used for the retrieval of the current local time. The

local character of the now operation is reflected by its application to the

self handle, i.e., self.now is the expected call statement for the now

operation. Operation now returns a float value that equals the current

absolute time when the operation is called. The mapping of the float value

onto a concrete daytime, e.g., year, month, day, hour, etc., is considered

to be outside the scope of TIMEDTTCN-3 and has to be provided by the

test equipment, e.g., in form of additional conversion functions.

• The resume operation provides the ability to delay the execution of a test

component. The argument of the resume operation is considered to be an

absolute time value, i.e., the point in time when the test compnoent shall

resume its execution. If required, a relative time can easily be specified by

using the current time as reference time, e.g., waiting for 3 seconds can be

described by resume(self.now + 3.0).

An example for the usage of the absolute time extension is shown in Figure 3.

The current time is retrieved in line 15. It is used to calculate the sending time
5From a conceptional point of view, synchronized test components share the same clock,

even though in a real implementation, the clocks of the test components are synchronized by
using a synchronization protocol [16, 17, 18].

TimedTTCN-3 – A real time extension for TTCN-3 11

of the first data packet. The sending time is used by the resume operation in

line 17. The test component will resume when the specified time is reached.

4.2 Synchronization of Clocks

Time values are observed and used locally by the test components. Time values

that are observed in different test components may be exchanged and used for

further computations. But this only makes sense if the clocks of the involved test

components are synchronized. The synchronization itself is outside the scope of

TIMEDTTCN-3 and should be guaranteed by the test equipment, but require-

ments for clock synchronization may very well be expressed in TIMEDTTCN-3.

These requirements may be used by a TIMEDTTCN-3 compiler to distribute test

components in an adequate manner or by a TIMEDTTCN-3 runtime environment

to execute synchronization procedures for the test devices.

Timezones Most specification and implementation languages either support

local time or global time. Local time means that each behavioral entity, e.g., an

SDL process or a TTCN-3 test component, has its own local time. Global time

means that all behavioral entities share the same global time. Global time is

perfect for the purpose of real-time testing, because all test components have by

definition the same global time and are synchronized.

However, neither local nor global time are realistic assumptions for real-time

testing situations. A real-time test environment typically consists of several

devices. Some devices are synchronized and others not. If synchronization among

two or more test components is required to reach the goal of a test case, the

components have to be executed either on the same device or on synchronized

devices.

The developer of real-time test cases should not care about synchronization

procedures and the distribution of test components himself, but he can support

their implementation by identifying test components which have to be synchro-

nized. For this purpose, TIMEDTTCN-3 supports the timezones concept.

A timezone is an (optional) attribute that can be assigned to a test compo-

nent when the component is created. Test components with the same attribute

are considered to be synchronized, i.e., they have the same absolute time. A

12 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

test component can only have one timezone attribute. Test components without

timezone attributes are considered to be not synchronized with other compo-

nents.

Implementation of the Timezones Concept TIMEDTTCN-3 implements

the timezones concept by using an enumeration type with the reserved name

timezones. The user has to specify the timezone attribute values by defining

the timezones type in the module definitions part of a TIMEDTTCN-3 module.

The usage of an enumeration type only makes sense if the number of timezones

is finite and known. We believe that this is a realistic assumption.

In TIMEDTTCN-3, a timezone attribute is associated with a test component

when the component is created, i.e., the timezone attribute is an optional pa-

rameter of the execute and the create operations. The timezone attribute of

an mtc is assigned by using an execute operation. Attributes of all other test

components are assigned by means of the create operations.

The flexibility of the timezones concept can be improved by making the time-

zones visible to the test components. This is implemented in TIMEDTTCN-3 by

means of a special timezone function which returns the timezone of the compo-

nent that called the function. Like the now operation, the timezone operation

is always applied to the self handle of a test component, i.e., self.timezone is

the expected call statement for the timezone operation. The timezone infor-

mation may be exchanged among test components to check if synchronization

conditions are satisfied, or used to create several synchronized components.

The usage of the timezone concept is shown in Figures 3, 6 and 11. Figure 6

presents the definition of timezones Berlin, Hamburg and Luebeck. In our test case

example, the mtc is created by the execute statement in line 5 of Figure 11

and receives the timezone attribute Luebeck. The behaviour of the mtc is shown

in Figure 3. The mtc creates the test component Responder (line 8) and assigns

its own timezone to the new component, i.e., mtc and Responder are consid-

ered to be synchronized. A TIMEDTTCN-3 run-time environment may use this

information to ensure this synchronization condition.

TimedTTCN-3 – A real time extension for TTCN-3 13

(1) type enumerate timezones {
(2) Hamburg, Luebeck, Berlin
(3) }

Figure 6: Definition of timezones

5 Evaluation of Real-Time Properties

While functional behaviour is basically tested by using sequences of send and

receive operations, real-time requirements can be tested by relating particular

points in time to each other [1, 2, 12, 13, 14]. The essence of the various real-time

requirements can be broken down to the relationship of points in time. Mathe-

matical terms can be used to evaluate whether the points in time of interesting

events fulfill a certain real-time requirement or not.

To obtain those points in time, existing functional TTCN-3 test cases are

instrumented by statements which generate timestamps. TIMEDTTCN-3 im-

plements this approach by making use of the possibility to read absolute time

values (Section 4) which serve as timestamps. The mathematical terms which

are applied on the collected timestamps can be coded as ordinary functions.

Those evaluation functions may return a judgement which indicates whether a

requirement is fulfilled or not. Depending on the characteristics of the real-time

requirement to be tested, an online or an offline evaluation of timestamps is

possible:

• Online evaluation is needed if it is not possible to separate functional

and non-functional requirements, i.e., a non-functional property directly

influences the functional behaviour of a testcase. In such a case, evaluation

of non-functional observations must be performed during the testrun in

order to react on the result of the evaluation. Online evaluation has the

drawback of cluttering the testcase and slowing down the performance of

the testcase which may be undesirable for time-critical testcases.

• Offline evaluation may be used if the non-functional requirements which

are subject of testing have no influence on the functional reaction of a

testcase. In this case, the code just needs to be instrumented by statements

that log the relevant timestamps. The non-functional requirement itself

14 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

can be specified separately. Based on the timestamps in the logfile, the non-

functional property can be evaluated when the testrun has finished. Offline

evaluation has the advantage of having a low impact on the performance

of a testcase, since timestamps have to be logged only during the testrun.

Moreover, it does not clutter up the functional testcase with code needed

for specifying non-functional requirements.

5.1 Online Evaluation

For performing online evaluation, the relevant timestamps have to be evaluated

during the testrun, e.g., by calling a special evaluation function with timestamps

as actual parameters.

In a distributed test architecture, non-functional requirements may involve

timestamps which have been collected by different test components. In this

case, the evaluating component needs to obtain timestamps from other compo-

nents. To achieve this, timestamps can either be piggybacked in the payload of

some IUT signals or be communicated directly among test components by using

coordination messages. For implementing online evaluation, the new concepts

of TIMEDTTCN-3 which have been introduced so far, are sufficient.

In our test case example (Section 2), online evaluation is used to check the

fulfillment of a non-functional latency requirement. In case of a violation, the

local test verdict of the Responder test component is set to conf (line 16 in

Figure 4).

The online evaluation of the latency requirement covers timestamps of several

test components. Hence, the remote timestamps have to be transfered to the

evaluating component. The evaluation function is called in the Responder test

component (line 15). The receive operation for the MDATind signal (line 10)

is local to the Responder component. The timestamp for the receive opera-

tion is obtained by calling now and stored in variable receiveTime (line 11). In

contrast, the corresponding send operation is performed by the mtc and the

associated timestamp is piggybacked to the payload of the IDATind signal (line 19

in Figure 3).6

6In our Inres example, the payload of the IDATind signal is considered to be of type float.
In the more general case, the float value has to be encoded into the particular payload type.

TimedTTCN-3 – A real time extension for TTCN-3 15

The Responder component extracts the piggybacked timestamp from the

received signal and assigns it to variable sendTime (line 13 in Figure 4). After-

wards, the online evaluation function evalLatency (line 15) is called. The ac-

tual parameters of this function call are send and receive time as well as the

boundaries 1ms and 5ms which describe the incarnation of the latency real-time

requirement.

(1) function evalLatency(float timeA, float timeB,
float lowerbound, float upperbound) return verdicttype {

(2) var float latency:=timeB-timeA;

(3) if ((latency<upperbound) and (latency>lowerbound)) {
(4) return pass; // non-functional pass
(5) }
(6) else {
(7) return conf ; // non-functional fail
(8) }
(9) }

Figure 7: TIMEDTTCN-3 online evaluation function

The evaluation function evalLatency (Figure 7) checks the condition related

to latency (lowerbound < treceive − tsend < upperbound) of related timestamps

(line 3). Depending on the result, it returns either a pass or a conf verdict

(lines 4 and 5) which may be used by the calling entity for further decisions.

5.2 Offline Evaluation

When using offline evaluation, the evaluation function is merely called after

the test execution. TIMEDTTCN-3 offers means to record timestamps in a

logfile during a testrun in order to evaluate them afterwards. The final test

verdict is a composition of the functional test verdict and result of the subse-

quent offline evaluation. To enable offline evaluation of real-time requirements,

TIMEDTTCN-3 refines the existing logfile concept of TTCN-3.

TTCN-3 assumes that one global or several local logfiles exist and allows

to log comments by means of the log statement. The number of logfiles is not

specified, the logging mechanism is not described and neither module control nor

test components can access the global or local logfiles. For an efficient offline

evaluation, module control and test components need access to the logfiles and

the contents of the logfiles have to be specified more formally.

16 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

The Logfile Concept A TIMEDTTCN-3 logfile is basically a list of values of

arbitrary TTCN-3 types. A logfile is of type logfile and it is possible to handle

logfiles by means of variables or to pass them into functions.

Each TIMEDTTCN-3 test component has its own local logfile. A local logfile

is initialized automatically when the owning component is created. When test

execution finishes, i.e., the main test component terminates, the local logfiles

are automatically merged into a global one. TIMEDTTCN-3 does not specify

the internal mechanisms that are needed for storing and maintaining logfiles7,

but defines four functions for accessing the entries of a logfile (Figure 8).

Operation name Return type Function

first(sortkey, value) boolean Select and sort logfile by sortkey and
move to first matching entry in the log-
file

next(value) boolean Move to the next matching entry

previous(value) boolean Move to the previous matching entry

retrieve type of sortkey
used as parameter
of first

Retrieve entry from current logfile po-
sition

Figure 8: Overview of TIMEDTTCN-3 logfile operations

Logging of Events TIMEDTTCN-3 refines the TTCN-3 log statement in or-

der to write information into logfiles. But in TTCN-3, the argument of the

log statement is an arbitrary string. In TIMEDTTCN-3, the argument can be

the value of any arbitrary valid type. For offline evaluation, a special structured

type with a timestamp field may be specified. A corresponding offline evaluation

function may only consider logfile entries of the special type in order to judge

the fulfillment of the real-time requirement.

Logfile Operations For retrieving entries of a logfile, TIMEDTTCN-3 offers

means for sorting a logfile by a certain field of the logfile’s entries. Since a logfile

may contain values of arbitrary types, sorting and retrieving is only possible for

a certain type which has to be specified. According to the order which is imposed

by sorting, the first, the next or the previous logfile entry may be retrieved. For
7The mechanisms for storing and maintaining logfiles are considered to be implementation

specific and therefore outside the scope of TIMEDTTCN-3.

TimedTTCN-3 – A real time extension for TTCN-3 17

this purpose, TIMEDTTCN-3 uses an internal cursor which points to an entry

in the logfile. This cursor can be moved and the value at the current cursor

position may be retrieved.

The operation first serves two purposes: It selects the entries of the logfile by

their types and sorts them. In addition, it moves the cursor to the first matching

entry in the logfile. The first parameter of first specifies the field which is used

as a sorting key. This is done using the TTCN-3 template notation: A “?”

indicates the field which is used as sorting key, all other fields must be set to

“-”. The type of the template is used to select the type of entries which are

regarded by the logfile operations presented in Figure 8. The second parameter

can be used to further restrict the value of the entry, i.e., the internal cursor is

moved to the first entry that matches the second parameter. The same matching

mechanisms which are available for TTCN-3 receive statements apply.

The operations next and previous place the internal cursor to the next

matching entry before or after the current cursor position. The order to which

next and previous refer to is imposed by the sorting resulting from operation

first. The parameter of next and previous is used in the same way as the

second parameter of first. More complex search operations may be build from

these basic search operations. The three operations first, next and previous

return true when the matching entry is found in the logfile, otherwise false. The

value of the last matched entry, i.e., the value at the current cursor position, can

be retrieved by the retrieve operation.

The Testrun Handle For the handling of global logfiles, TIMEDTTCN-3 in-

troduces the concept of testrun handles and changes the semantics of the exe-

cute statement. A testrun handle is basically a pointer of type testrun which

is returned by the execute statement and which gives access to the results of a

testrun, i.e., the test verdict and global testlog.

The operations which can be applied on a testrun handle are shown in Fig-

ure 9. The getlog operation is used to retrieve the logfile of a testrun. The

operations getverdict and setverdict are used to retrieve and set the global

verdict after a testrun. The change of the final testrun verdict might be neces-

sary, if an offline evaluation shows that a non-functional property is not fulfilled.

18 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

For the setverdict operation the same overwriting rules as defined in Section 3

apply.

Operation name Return type Description

getlog logfile Get logfile

getverdict verdicttype Get global verdict

setverdict(. . .) – Set global verdict

Figure 9: Overview of TIMEDTTCN-3 operations for testrun handles

Local Handling of Logfiles Global logfiles can be retrieved by applying the

getlog function to testrun handles (Figure 9). TIMEDTTCN-3 also allows to

apply the getlog function to self handles, i.e., a test component may access its

own logfile in order to perform a local offline evaluation after the collection of

timestamps.

Example The smooth interworking of all TIMEDTTCN-3 concepts for offline

evaluation will be explained by means of our test case example (Section 2).

For logging test events, the data types shown in Figure 10 have been defined.

Values of type TimestampType will be logged. Its field values describe the logtime

(line 2), the timezone of the logging component (line 3) and the type of the

message which causes the log event (line 4). The message type is described by a

special enumeration type (lines 6-8).

(1) type record TimestampType {
(2) float logtime;
(3) timezones componentzone;
(4) Messages messagename;
(5) }

(6) type enumerate Messages {
(7) IDATreq, MDATind;
(8) }

Figure 10: Data types used for offline evaluation in the Inres example

Local logfile entries are written by the mtc before sending an IDATreq message

(line 18 in Figure 3) and by the Responder test component after the reception

of a correct MDATind message (line 12 in Figure 4).

TimedTTCN-3 – A real time extension for TTCN-3 19

Figure 11 shows the TIMEDTTCN-3 module control part for the Inres ex-

ample. The control part starts with variable declarations for the handling of a

testrun, a logfile and a verdict value (line 2-4). The testcase InresRTexample is

executed (line 5) and the execute statement returns a testrun handle which is

assigned to variable myTestrun.8 The verdict is retrieved from the testrun and

stored in variable myVerdict (line 6).

If myVerdict is pass (checked in line 7), the logfile is retrieved (line 8) and

the offline evaluation function evalMeanArrivalTime is called (line 9). The actual

parameters for the evaluation function are the message identifier MDATind for

which the mean arrival time should be checked, the timezone value Luebeck for

the identification of relevant logfile entries, the time bounds of 10ms and 15ms

that define the requirement to be checked, the integer value 100 that defines the

number of relevant timestamps and the reference to the logfile to be evaluated.

Finally, the result of the offline evaluation is assigned to the final verdict of the

testrun (line 10).

(1) control {
(2) var testrun myTestrun; // *** Variable for testrun handling
(3) var logfile myLog; // *** Variable for testlog handling
(4) var verdicttype myVerdict;

(5) myTestrun := execute(InresRTexample(0), Luebeck);

(6) myVerdict := myTestrun.getverdict; // *** retrieval of verdict
(7) if (myVerdict == pass) {
(8) myLog := myTestrun.getlog; // *** Retrieval of testlog
(9) myVerdict := evalMeanArrivalTime(MDATind, Luebeck,

0.01, 0.015, 100, myLog); // *** Offline evaluation
(10) myTestrun.setverdict(myVerdict); // *** Change of testrun verdict
(11) }
(12) }

Figure 11: TIMEDTTCN-3 control part for the offline evaluation

The offline evaluation function evalMeanArrivalTime is shown in Figure 12.

It applies the mathematical term lowerbound < [
∑n
i:=2(ti − ti−1)] /(n − 1) <

upperbound, which describes the mean arrival time to the collected timestamps.

In order to iterate through all captured timestamps for received MDATInd

messages, the operations first (line 4 in Figure 12) and next (line 7) are used.

Since the first operation in line 4 sorts the logfile by the logtime field, the times-

tamp entries are matched in ascending order. If first or next fails, the logfile
8The meaning of the timezone parameter Luebeck has been explained in Section 4.2.

20 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

(1) function evalMeanArrivalTime(Messages messageId, timezones zone, float lowerbound,
float upperbound, integer count, logfile timelog) return verdicttype {

(2) var float timeSum:=0, averageArrivalTime;
(3) var TimestampType stampA, stampB;

(4) if (timelog.first(TimestampType:{?,-,-},
TimestampType:{?, zone, messageId}) == true) { // search

(5) stampA := timelog.retrieve; // Get current timestamp entry
(6) for (var integer i := 2; i <= count; i := i + 1) {
(7) if (timelog.next(TimestampType:{?, zone, messageId}) == true) { // search
(8) stampB := timelog.retrieve; // Get current timestamp entry
(9) timeSum:= (stampB.logtime - stampA.logtime) + timeSum;

(10) stampA := stampB;
(11) }
(12) else {
(13) return fail; // Wrong number of messages indicates functional problem
(14) }
(15) }
(16) averageArrivalTime := timeSum / (count-1);
(17) if ((averageArrivalTime < upperbound) and (averageArrivalTime > lowerbound)) {
(18) return pass; // return non-functional pass
(19) }
(20) else {
(21) return conf ; // return non-functional fail
(22) }
(23) }
(24) return fail; // Wrong number of messages indicates functional problem
(25) }

Figure 12: TIMEDTTCN-3 offline evaluation function

contains less matching timestamps than expected. This is an indication for a

non-conforming behaviour of the IUT. Hence, evaluation is aborted with a fail

verdict (lines 13 and 24).

The retrieve operation (lines 5 and 8) yields the value of the last successfully

matched entry, which is used to calculate the mean arrival time. Based on the

final value of the calculation, the function returns either pass or conf (lines 18

and 21).

6 Summary and Outlook

We presented TIMEDTTCN-3, a real-time extension for TTCN-3, and demon-

strated its usage by applying it to a testcase for the Inres protocol. By intro-

ducing absolute time for test components, TIMEDTTCN-3 allows to wait un-

til an absolute point in time and to collect timestamps. Timestamps may be

TimedTTCN-3 – A real time extension for TTCN-3 21

evaluated online during the testrun or offline after the testrun. For the offline

evaluation, TIMEDTTCN-3 offers a flexible log mechanism with local and global

logfiles. The log mechanism also enables an offline evaluation of non-functional

properties which are not real-time related. For example, failure rates for a fixed

amount of data packets can be checked offline by logging correct as well as er-

roneous message receptions without any time information. TIMEDTTCN-3 can

also be used for distributed test architectures, since it supports the specification

of synchronization conditions for clusters of clock-synchronized test components.

This allows to compare timestamps captured at different, but synchronized test

components.

A module of pre-defined timestamp type definitions and evaluation functions

can be provided in order to facilitate the usage of TIMEDTTCN-3. In this way,

the real-time testcase developer simply needs to select the appropriate evaluation

function from the pre-defined library and instrument the testcase accordingly.

In this paper we did not address the formal semantics of the new TIMEDTTCN-3

constructs. Most TIMEDTTCN-3 extensions can be explained by an extension

of the existing TTCN-3 semantics. Only the concept of absolute time in combi-

nation with the notion of synchronized components and the resume operation

requires new real-time semantics. These features allow the description of time

dependencies among test components, i.e., absolute time values influence the

behaviour in different test components.

We also did not cover load generation. For most real-time tests it is necessary

to establish some background load to obtain a realistic environment. This may

easily be achieved by using either an external load generator or by explicitly

implementing a load generator using TIMEDTTCN-3 statements. As described

in [7], an external load generator may be controlled from TTCN-3 by abstract

service primitives which are passed to the load generator by an adaptor port.

Furthermore, we did not address the issue of online evaluation functions with

memory, i.e., variables of evaluation functions keep their values between sub-

sequent calls. Such “static” variables are valuable for the online evaluation of

real-time requirements like floating average. A simple workaround for “static”

variables is possible by declaring such variables as component variables.

A further open issue is the graphical representation of TIMEDTTCN-3 test

cases. In the same manner as a graphical format (GFT) is currently developed

22 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

for TTCN-3 [6], extensions of GFT are needed to represent the TIMEDTTCN-3

extensions graphically.

Our current work concentrates on applying the proposed extensions in a larger

case study in order to assess the capabilities of TIMEDTTCN-3. This includes

also the implementation of the language extensions in our TTCN-3 toolset. Our

future work will focus on the mentioned open issues, especially on the real-time

semantics and the graphical representation of TIMEDTTCN-3 test cases.

References

[1] ATM Forum Performance Testing Specification (AF-TEST-TM-0131.000).

The ATM Forum Technical Committee, 1999.

[2] Traffic Management Specification Version 4.1 (AF-TM-0121.000). The ATM

Forum Technical Committee, 1999.

[3] ETSI Technical Report (TR) 101 666 (1999-05): Information technol-

ogy - Open Systems Interconnection Conformance testing methodology

and framework; The Tree and Tabular Combined Notation (TTCN)

(Ed. 2++). European Telecommunications Standards Institute (ETSI),

Sophia-Antipolis (France), 1999.

[4] ETSI European Norm (EN) 101 873-1 (2001-06): The Tree and Tabu-

lar Combined Notation version 3; Part 3: TTCN-3 Core Language. Eu-

ropean Telecommunications Standards Institute (ETSI), Sophia-Antipolis

(France), 2001.

[5] ETSI European Norm (EN) 101 873-2 (2001-06): The Tree and Tabular

Combined Notation version 3; Part 2: TTCN-3 Tabular Presentation For-

mat (TFT). European Telecommunications Standards Institute (ETSI),

Sophia-Antipolis (France), 2001.

[6] ETSI Technical Report (TR) 101 873-3 (2001-06): The Tree and Tabular

Combined Notation version 3; Part 3: TTCN-3 Graphical Presentation

Format (GFT). European Telecommunications Standards Institute (ETSI),

Sophia-Antipolis (France), 2001.

TimedTTCN-3 – A real time extension for TTCN-3 23

[7] Roland Gecse, Péter Krémer, and János Szabó. HTTP Performance Eval-

uation with TTCN. In H. Ural, R.L. Probert, and G. von Bochmann,

editors, Testing of Communicating Systems, volume 13. Kluwer Academic

Publishers, 2000.

[8] J. Grabowski, A. Wiles, C. Willcock, and D. Hogrefe. On the Design of

the New Testing Language TTCN-3. In H. Ural, R.L. Probert, and G. von

Bochmann, editors, Testing of Communicating Systems, volume 13. Kluwer

Academic Publishers, 2000.

[9] T. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. In

Real-Time: Theorie and Practice, volume 600 of Lecture Notes in Computer

Science, 1991.

[10] D. Hogrefe. Report on the Validation of the Inres System. Technical Report

IAM-95-007, Universität Bern, November 1995.

[11] IEEE Standard 1003.1: Information technology – Portable Operating Sys-

tem Interface (POSIX) – Part 1: System Application: Program Inter-

face (API) [C Language]. Institute of Electrical and Electronics Engineers

(IEEE), 1996.

[12] Request for Comments 1193: Client requirements for real-time communica-

tion services. Internet Engineering Task Force (IETF), 1990.

[13] Request for Comments 1242: Benchmarking Terminology for Network In-

terconnection Devices. Internet Engineering Task Force (IETF), July 1991.

[14] Request for Comments 2330: Framework for IP Performance Metrics. In-

ternet Engineering Task Force (IETF), May 1998.

[15] Information technology – Open Systems Interconnection – Conformance

testing methodology and framework. ISO/IEC, 1994-1997. International

ISO/IEC multipart standard No. 9646.

[16] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed

System. Communications of the ACM, 21, 1978.

[17] L. Lamport. Concurrent Reading and Writing of Clocks. ACM Transactions

on Computer Systems, 8, 1990.

24 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

[18] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-Tolerant Clock Syn-

chronization in Distributed Systems. IEEE Computer, 23, 1990.

[19] I. Schieferdecker, B. Stepien, and A. Rennoch. PerfTTCN, a TTCN Lan-

guage Extension for Performace Testing. In M. Kim, S. Kang, and K. Hong,

editors, Testing of Communicating Systems, volume 10. Chapman & Hall,

1997.

[20] T. Walter and J. Grabowski. Real-Time TTCN for Testing Real-Time and

Multimedia Systems. In M. Kim, S. Kang, and K. Hong, editors, Testing

of Communicating Systems, volume 10. Chapman & Hall, 1997.

[21] T. Walter and J. Grabowski. A Framework for the Specification of Test

Cases for Real-Time Distributed Systems. Information and Software Tech-

nology (41), 1999.

[22] Message Sequence Charts (MSC). ITU-T Rec. Z.120, 1996.

